Tetrahedron Letters, Vol.30, No.40, pp $5425-5428$, 1989 0040-4039/89 \$3.00 + .00
Printed in Great Britain Press plc Pergamon Press plc Printed in Great Britain

PROTECTIVE GROUP TUNING IN THE STEREOSELECTIVE CONVERSION OF a-AMINO ALDEHYDES INTO AMINOALKYL EPOXIDES

M.T. Reetz* and J. Binder

Fachbereich Chemie der Universität, Hans-Meerwein-Strasse, 3550 Marburg, FRG

Abstract: Sulfonium and arsonium ylides of the type $CH_2=S(CH_3)$ and $CH₂=As(Ph)₃$ react with doubly protected a-amino aldehydes 1 derived from amino acids to form aminoalkyl epoxides 3/4, diastereofacial selectivity ranging between 86:14 and >95:<5.

Doubly protected α -amino aldehydes, prepared from the corresponding amino acids, are emerging as highly useful homochiral building blocks^{1,2)}. Addition reactions of RMgX, RLi, enolates and Me₃SiCN/ZnX₂ occur with high degrees of non-chelation-control²⁾, in contrast to the majority of stereorandom reactions of a-amino aldehydes bearing only one protective group (BOC, 9-fluorenyl, 9-phenyl-9-fluorenyl, etc.)³⁾. It was of interest to see if this type of protective group tuning⁴⁾ is also effective in the reaction of α -amino aldehydes with sulfur ylides to form aminoalkyl epoxides. Previously, BOC(t-butoxycarbonyl)-protected aldehydes had been shown to react stereorandomly with $CH_2=S(CH_3)$ ₂ (1:1 diastereomeric mixtures of adducts in yields of less than $50\frac{1}{2}$). This is unfortunate, since enantio- and diastereomerically pure aminoalkyl epoxides are highly useful intermediates in the synthesis of certain dipeptide isosteres and other pharmacologically important ethanolamino compounds^{5,6)}.

Upon reacting the sulfonium ylide 2^{7} with doubly protected aldehydes 1, the epoxides $3/4$ were formed stereoselectively. The major diastereomers turned out to be the anti-adducts 3 (Table 1), which stereochemically correspond to the non-chelation-controlled Grignard and aldol adducts previously reported.

The results show that in going from BOC-protected amino aldehydes⁵⁾ to **doubly protected analogs 11f2), diastereofacial selectivity increases dramatically8). Some differences are observed within the series N,Ndibenzyl, N,N-diallyl and N,N-di(o-methylbenzyl), the latter protective groups being the most bulky and leading to the highest levels of diastereoselectivity (entries 3 and 4 of Table 1). Diastereoselectivity is a little lower than previously observed for RMgJx, RLi and enolate additionsI"). Although NaI is present in the ylide additions (from** deprotonation of (CH_3) ₃SI by NaH), the degree of metal involvement is likely **to be less than in Grignard and aldol additions. This could be the source of lower selectivity.**

Table 1. Epoxide Formation by Addition of Ylide 2 to Aldehydes 1

Entry Aldehyde Yield of Ratio

Stereoselecitvity was similar when using the ylide $CH_2 = S(Ph)$ ₂ or $CH_2=S(0)$ (CH₃)₂, but pronounced effects were observed upon reacting the arsonium ylide obtained from the salt 5^{10} . In the temperature range of -78° C to -40° C (2h), not the epoxides $3/4$ were formed, but the ylide adducts $6/7$ which were fully characterized¹¹⁾. They were transformed by NaH into the **desired epoxides, the J.:& ratios being >95:<5 (for 3a/4a; 65%) and 9O:lO (for 3b/4b; 60%). The increased diastereoselectivity may be related to the greater bulk of the reagent (three phenyl groups on the As-moiety).**

5426

The configurational assignment was made by reacting the crude epoxides with (CH₂)₂CuLi, which afforded the amino alcohols $g/9$. The $g:9$ ratios correspond to the 3:& ratios of epoxides used. The major diastereomers 8 turned out to be identical in every respect to the EtMgBr adducts of the aldehydes $1a$ $b^{2/9}$, proving the relative configuration and the optical purity (>98%). The N-benzyl products were deprotected using Pd/H₂ (80-90%)²⁾.

Cuprate or hetero-nucleophile induced ring opening is expected to be synthetically useful in more complicated cases, e.g., reactions of amines in the presence of Al_2O_3 ¹²⁾ to form 2-hydroxy 1,3-diamines:

In summary, we have shown that stereoselective epoxide formation is possible when doubly protected α -amino aldehydes are treated with sulfonium or arsonium ylides. This methodology extends the use of amino acids as a pool of homochiral compounds.

Acknowledgement: This work was supported by the Deutsche Forschungsgemeinschaft (SFB 260 and Leibniz-Programm).

References and Notes:

- The preceding publication describes new results from our laboratories as $\mathbf{1}$. well as literature citations referring to novel applications recently reported by other groups.
- 2.1 M.T. Reetz, M.W. Drewes and A. Schmitz, Angew. Chem., 99 (1987) 1186; Angew. Chem. Int. Ed. Engl. 26 (1987) 1141; M.T. Reetz, M.W. Drewes, K. Harms and W. Reif, Tetrahedron Lett. 29 (1988) 3295.
- M.T. Reetz, Pure Appl. Chem. 60 (1988) 1607; J. Jurczak and A. Gole- 3 biowsky, Chem. Rev. 89 (1989) 1459; W.D. Lubell and H. Rapoport, J. Am. Chem. Soc. $\frac{109}{1987}$ (1987) 236.
In the case of α -hydr
- α -hydroxy carbonyl compounds, the nature of the 4. protective group can influence the direction and extent of diastereofacial selectivity of nucleophilic additon reactions; see for example: M.T. Reetz, Angew. Chem. 96 (1984) 542; Angew. Chem. Int. Ed. Engl. 23 (1984) 556; M.T. Reetz and M. Hullmann, J. Chem. Sot. Chem. Commun. (1986) 1600; and literature cited therein.
- 5. B.E. Evans, K.E. Rittle, C.F. Homnick, J.P. Springer, J. Hirshfeld and D.F. Veber, J. Org. Chem. 50 (1985) 4615.
- 6. J.R. Luly, J.F. Dellaria, J.J. Plattner, J.L. Soderguist and N. Yi, J. Org. Chem. 52 (1987) 1487.
- 7. E.J. Corey and M. Chaykovsky, J. Am. Chem. Soc. 87 (1965) 1353.
- 8. Typical procedure: Under an atmosphere of nitrogen the suspension of NaH (219 mg; 7.3 mmol) in 10 ml of dry dimethylsulfoxide (DMSO) is heated at 75-80^oC for about 45 min (until no more H_2 is evolved)⁷). At room temp. about 20 ml of THF is added and the mixture cooled -10^{O} C. To the rapidly stirred mixture a solution of trimethylsulfonium iodide (1.45 g; 7.0 $mmol)$ in 10 ml DMSO is added⁷⁾. After 5-10 min the amino aldehyde 1 (6.9) mmol in 4 ml THF) is added and the mixture stirred at -10^{O} C for about 0.5 h. After stirring at room temp. for another hour, the mixture is poured on 3 times the volume of H_2O and extracted 3 times with diethyl ether. The combined org. phases are washed with sat. NaCl solution, dried over $Na₂SO₄$ and concentrated. The crude product is flash-chromatographed over silica gel (pet-ether/ethyl acetate, about 30:1), providing pure epoxides $3/4$. Separation of diastereomers is difficult, in contrast to ring-opened products of the type $\frac{8}{2}$ and $\frac{10}{11}$.
- 9. M.W. Drewes, Dissertation, Universität Marburg, 1988.
- 10. W.C. Still and V.J. Novack, J. Am. Chem. Soc. <u>103</u> (1981) 1283; review on arsonium ylides: H. Yaozeng and S. Yanchang, Adv. Organomet. Chem. 20 (1982) 115.
- 11. Still¹⁰⁾ employed higher temperatures and used HMPA as an additive, which led directly to epoxides. Under such conditions we obtained mixtures of $6/2$ and $3/4$. Best procedure: The suspension of methyltriphenylarsonium tetrafluoroborate¹⁰) (9.3 mg; 2.3 mmol) in 15 ml of dry THF is treated under N₂ with 2.4 mmol of KN(SiMe₃)₂ at -40^oC and stirred for 45 min. After cooling to -78° C, the stirred solution is treated with a cooled (-78°C) solution of amino aldehyde 1 (2.1 mmol in 10 ml THF), stirred for 1 h at -78° C and 1 h at -40° C. Then 10 % citric acid is added, the mixture brought to room temp. and extracted 3 times with CH_2Cl_2 . The combined org. phases are washed with NaCl solution, dried over $Na₂SO₄$ and concentrated. The crude product is chromatographed over a short silica gel column (HCCl₃/CH₃OH, 20:1), affording the BF_A salts $6/2$. In the case of $6a$, recrystallization from ether/ethanol provides an analytically pure crystalline product $(m.p. 188-190^{\circ}C);$ $^{13}C-$ NMR $(DCC1₃)$: $\gamma = 8.3$, 34.3, 54.8, 60.1, 67.6, 122.4, 127.1, 128.4, 129.0, 130.6, 132.6, 133.8, 139.9 ppm. FD-MS: $m/e = 574$ ($M^+ - BF_A$; 100%).
- 12. G.H. Posner, Angew. Chem. <u>90</u> (1978) 527; Angew. Chem. Int. Ed. Engl. <u>17</u> (1978) 487.

(Received in Germany 8 August 1989)